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In most publications devoted to filtration-combustion waves, the temperature dependences of the heat capacity
of gas and solid phases have not been considered at all. In those cases where such dependences are included
in the models (numerical ones, as a rule) the authors put emphasis on certain interesting features of such sys-
tems. This work is devoted to consideration of special cases related to the temperature dependences of the
heat capacities.

In the first stages of analytical study of the limits of propagation of a flame and subsequently filtration-com-
bustion waves [1–7], the properties of media (heat conduction, heat capacity, heat of reaction) were assumed to be
constant, i.e., it was agreed that one can employ the average values. It is precisely at that time that the terminology
of this area of study began to include such notions as the thermal velocity uth and the adiabatic thermal effect of re-
action ∆Tad, which were considered to be constants for the problem in question. The classical formula relating the
maximum temperature Tmax in a filtration-combustion wave to its velocity uw and other parameters of the process is
given (in one form or another) or employed almost in all the works on this subject:

Tmax = T0 + 
∆Tad

1 − 
uw
uth

 , (1)

where uth is determined in terms of the specific mass flow rate of the gases G, the heat capacity of the gases cg, the
bulk density of a porous charge ρs.bulk, and the heat capacity of the charge material cs as follows: uth = Gcg(cs ρs.bulk).

In the initial works and for a long time thereafter, much research effort went into the development of a means
for calculating the basic characteristics of a filtration-combustion wave uw and Tmax. Condition (1), which is an energy
balance, includes these two unknown quantities. Another equation which will supplement the definition of the problem
must contain all the remaining characteristics of the process, such as the kinetics of oxidation, the thermal conductivity
of the charge, and the intensity of interphase heat exchange. Different modifications of closing relations exist (for ex-
ample, [5, 7–10]), but, in our opinion, it is not quite correct to single out any of them as the best one. In comparing
the "accuracy" of such approaches, one usually orients oneself to numerical solution of the problem in the analogous
formulation but without the simplifications required for obtaining analytical expressions. However, all these approxima-
tions employ the description of the combustion kinetics by one exponent, but this simplification is so rough that the
comparison of the accuracy within this approximation is not extended to the comparison with experimental data.

In recent years, in developing chemical reactors that employ filtration combustion, one has begun to include
real kinetic schemes, which take into account tens of components and hundreds of reactions, into numerical models
[11–16]. Correct temperature dependences of cg taking into account changes in both the temperature and the composi-
tion were naturally used in such calculations, and it was unnecessary to use the quantity ∆Tad since the formulation of
the problem became thermodynamically consistent and included the heat of formation of the components. The incorpo-
ration of the real temperature dependence of cs into such a model complicated it in no way and also became a norm
of modeling.
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To accelerate the process of computations one frequently carries out calculations in the approximation of a
steady-state traveling wave, which is much faster than nonstationary modeling and provides all important information
[13, 15, 16]. In such an approach, the solution is found from the targeting of the parameter uw. Among the large num-
ber of variants of the systems of filtration combustion calculated without difficulties, one sometimes came across such
variants for which the targeting failed. The analysis of "poor" sets of the initial parameters led us to a simple expla-
nation of the reason why the targeting is impossible and to the algorithm of finding a solution of the traveling-wave
type for such cases.

To demonstrate the arising problem and its cause and a means for solving it we direct our attention to the
traditional nonstationary formulation of the problem of filtration combustion in enthalpy form:

G 
dEg

dx
 = αvol (Θ − Tg) , (2)

Eg =  ∑ 

k=1

K

 hk (Tg) Yk , (3)

cs ρs.bulk 
∂Θ
∂t

 = 
∂
∂x

 



λef 

∂Θ
∂x



 − αvol (Θ − Tg) , (4)

G

εp
 
dYk
dx

 = ω
.

kWk     (k = 1, ..., K) . (5)

When the approximation of a steady-state traveling wave is employed a change to a coordinate system moving with a
velocity uw is carried out, which results in the appearance, in Eqs. (2), (4), and (5), of the convective terms

G 
dEg

dx
 − uw ρg 

dEg

dx
 = αvol (Θ − Tg) , (6)

cs ρs.bulk 
∂Θ
∂t

 − uwcs ρs.bulk 
dΘ
dx

 = 
∂
∂x

 



λef 

∂Θ
∂x



 − αvol (Θ − Tg) , (7)

G

εp
 
dYk
dx

 − uw ρg 
dYk

dx
 = ω

.
kWk     (k = 1, ..., K) . (8)

The next step of transformation of the equations of the model is rejection of the terms uwρg 
dEg
dx

 and uwρg 
dYk
dx

 in (6)

and (8), which are 2 to 3 orders of magnitude smaller than the other terms of the equations. Authors often disregard
these transport components related to the motion of the wave without mention in their papers, since this disregard is
used as an approximation that is usual for everyone. For the case of combustion of atmospheric-pressure gases in or-
dinary solid charges such a simplification is sure to work, but upon a change to high pressures and charges of hollow
spheres it is necessary to carefully analyze the possibility of using it. In the case of combustion of liquid fuels in po-
rous media these quantities cannot be disregarded at all.

Analogously to the rejection of the transport terms in (6) and (8), one treats the nonstationary term cs ρs.bulk

∂Θ
∂t

 in Eq. (7) in the same manner, since the steady-state (i.e., stationary in a moving coordinate system) solution is

sought. It is precisely at this step that an error leading to the impossibility of targeting is introduced, and this error is
of fundamental character. The fact is that without analyzing the conditions of existence of the stationary solution
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which is then sought at −∞ one employs the supplied-gas temperature T0 as the asymptotic condition. However, situ-

ations exist where the temperature dependences of the heat capacities cg and cs are such that for the wave moving

with a velocity uw the stationary portion of the temperature profile is possible only for temperatures higher than a cer-

tain Tmin, which is in turn higher than T0. To demonstrate such a situation we transform (7), having added it and (6),

in which we have previously rejected the term uwρg 
dEg
dx

:

cs ρs.bulk 
∂Θ
∂t

 + G 
dEg

dx
 − uwcs ρs.bulk 

dΘ
dx

 = 
∂
∂x

 



λef 

∂Θ
∂x




 . (9)

For the asymptotic side of the solution the temperatures of the gas and the solid phase virtually coincide and (9) can
be rewritten in the form

cs ρs.bulk 
∂Θ
∂t

 + (Gcg − uwcs ρs.bulk) 
dΘ
dx

 = 
∂
∂x

 



λef 

∂Θ
∂x





(10)

or

cs ρs.bulk 




∂Θ
∂t

 + (uth − uw) 
dΘ
dx




 = 

∂
∂x

 



λef 

∂Θ
∂x




 . (11)

The hyperbolic operator on the left-hand side of (11) has the difference uth − uw (in which uw is a constant and the
uth is a function of temperature) as the velocity. If uth − uw > 0, the characteristics of the hyperbolic operator are di-
rected from left to right and, conversely, from right to left, for uth − uw < 0. The temperature dependence cg(Tg) can be
complex since it is determined by the chemical process with the resulting change not only in the type of molecules
but in their number as well. Moreover, it can change nonmonotonically, for example, first increase and then decrease.
The heat capacity of the solid material of the charge cs(Θ) increases monotonically with temperature, as a rule. It is
clear that the velocity of the filtration-combustion wave, dependent as it is on all the parameters of the problem, is
mainly determined by the high-temperature region of the solution but in no way by just the thermal velocity uth at the
initial temperature T0. It is obvious that if uth(T0) − uw < 0 the problem cannot be solved by targeting from T0, but this
by no means implies that a filtration-combustion wave does not exist. It is necessary to separate the cases where the
thermal-wave velocity uth(T, Θ) calculated from the real solution, i.e., for all the temperatures of this solution and their
attendant compositions of the gases, is higher than the velocity of the filtration-combustion wave uw (see Fig. 1a) and
the cases where the temperature interval exists in which uw > uth(T, Θ) (see Fig. 1b). The first variant corresponds to
a filtration-combustion wave in which the temperature profile becomes stationary in the entire interval of the existing
temperatures from T0 to Tmax, i.e., the entire profile is localized on a finite portion of space. For the second case (Fig.
1b), the distribution (localized in space) rapidly becomes stationary only in the interval from T1 to Tmax while the por-

Fig. 1. Thermal-wave velocities (solid curve) vs. temperature for three charac-
teristic cases (the quantity uw is denoted by the dashed curve): uw < uth(T) for
the ent ire  interval of temperatures T0 ≤ T ≤ Tmax (a); uw > uth(T) for
T0 ≤ T < T1 and uw < uth(T) for T1 < T ≤ Tmax (b); uw < uth(T) for T0 ≤ T < T1,
uw > uth(T) for T1 < T < T3, and uw < uth(T) for T3 < T ≤ Tmax (c).
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tion of the temperatures from T0 to T1 will constantly change, extending in space. From the viewpoint of the steady-
state profile (from T1 to Tmax), the picture at long times from the beginning of the process will appear as if this sta-
tionary solution has the asymptote T1 rather than T0 on the left-hand side (it is precisely the temperature T1 that is
transferred from right to left along the characteristic).

Figure 2 compares the solutions obtained in nonstationary modeling and using the model in the approximation
of a traveling wave. For case b the asymptote T1 was employed in the traveling-wave model. It is obvious that a cor-
rect assignment of the left-hand asymptote enables us to obtain all the important characteristics of the filtration-com-
bustion wave for both the "normal" situation (case a) and for case b with a "slow" low-temperature portion of the
solution. We note that the variant of Fig. 1c with two intersections of the distribution uth(T) and uw, having as it is
three characteristic temperatures T1, T2, and T3, actually differs little from case b. We should take a larger quantity,
i.e., T3, as an asymptote in the traveling-wave model. In case c, the portion between T0 and T2 will have a finite size
while the part of the profile between T2 and T3 will constantly be extended. We are unable to analytically describe the
evolution of this part of the temperature profile, although it is clear that the velocity of extension will be lower than
uw − uth(T2).

We note that in the given case the values of the asymptotes T1 and T2 were rather low for the chemical proc-
esses to be disregarded, and our consideration based on the single-temperature equation (11) is justified. With increase
in these temperatures, chemical processes can begin and the simplified analysis given above will turn out to be inac-
curate. The principle itself of the change in the height of the left-hand asymptote as a function of the relation uth (T)
and uw must be preserved.

We now return to the algorithm of solution of the problems of filtration combustion using the approximation
of a steady-state wave. First of all we must analyze the profile of the thermal velocity and find its lowest value. For
the profile uth(T) it will be uth

min = uth(T0) in case a and uth
min = uth(T3) in case c. If a tentative calculation for uw =

uth
min shows that such a velocity is high for this set of parameters, targeting must be carried out for the left-hand as-

ymptote T0. If the algorithm of solution requires that uw be increased, one should increase the left-hand asymptotic
value from which the targeting must begin. The minimum temperature Tas at which the thermal velocity uth(Tas) coin-
cides with uw ensuring solution of the problem is the asymptote sought. The solution obtained in the approximation of
the steady-state filtration-combustion wave with such an asymptote yields the correct value of uw and the correct form
of the profiles for temperatures higher than the asymptotic one (see Fig. 2).

APPENDIX

Initial Parameters for the Above Three Variants of Calculations. In all the cases we consider the combus-
tion of a methane/air gas mixture with a ratio of the volumes of 1/2.5 (the stoichiometric ratio is close to 4, i.e., cor-
responds to the reaction of incomplete oxidation of methane). To model the chemical kinetics we have employed the

Fig. 2. Temperature profiles calculated using the nonstationary model (dashed
curves) and the traveling-wave model (solid curve) for the three cases pre-
sented in Fig. 1: the entire profile T0 ≤ T ≤ Tmax is totally localized in space
(a); part of the profile for T0 ≤ T < T1 is nonstationary and is extended to infin-
ity, whereas the profile localized in space has been formed for T1 < T < Tmax
(b); uw < uth(T) for T0 ≤ T < T1, uw > uth(T) for T1 < T < T3, and uw < uth(T) for
T3 < T ≤ Tmax (c).
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scheme of [17]. The interphase heat exchange is described in accordance with [18]. The initial parameters employed
to solve the problem in the traveling-wave approximation and the calculation results are given in Table 1. For variants
a and b the calculations were carried out for a constant heat capacity of the porous charge, while in case c the quan-
tity cs changed piecewise-linearly, as is shown in Fig. 3.

NOTATION

cg, specific heat capacity of the gas mixture, J/(kg⋅K); cs, specific heat capacity of the charge material,
J/(kg⋅K); Eg, specific enthalpy of the gas mixture, J/kg; G, specific mass flow rate of the gas mixture, kg/(m2⋅sec);
hk, specific enthalpy of the kth component, J/kg; t, time, sec; Tg, gas temperature, K; ∆Tad, adiabatic thermal effect of
reaction, K; uw, velocity of the filtration-combustion wave, m/sec; uth, velocity of the thermal wave, m/sec; εp, inter-
granular porosity; Wk, molar mass of the kth component, kg/mole; x, space coordinate, m; Yk, weight fractions of the
components; Θ, skeleton temperature, K; Tmax, maximum temperature in the porous charge, K; ω

.
k, rate of formation

of the kth component, mole/(m3⋅sec); αvol, volumetric coefficient of interphase heat exchange, W/(m3⋅K); λef, effective
coefficient of thermal conductivity of the charge, W/(m⋅K); ρs.bulk, bulk density of the charge, kg/m3. Subscripts and
superscripts: as, asymptotic value; ef, effective value; g, gas phase; k, index of the chemical element in question; p,
porous medium; s, solid phase; th, thermal wave; w, filtration-combustion wave; ad, adiabatic conditions; s.bulk, value
averaged over the volume; vol, volumetric; max, maximum.
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